
Listing 5.1 and Listing 6
// P0800 Listing 5 revised: consult https://godbolt.org/g/ytP6fw for diagnostics
#include <regex>
#include <type_traits>
#include <range/v3/all.hpp>

int main()
{
std::enable_if_t<ranges::Regular<std::regex>(), std::regex> foo{};

}
#include <experimental/ranges/algorithm>
#include <experimental/ranges/iterator>
#include <regex>

using std::experimental::ranges::Regular;

int main()
{
Regular foo = std::regex{};

}

#include <iterator>

template <typename I>
void advance_helper(I i, typename std::iterator_traits<I>::difference_type n, std::random_access_iterator_tag) {

i += n;
}

template <typename I>
void advance_helper(I i, typename std::iterator_traits<I>::difference_type n, std::bidirectional_iterator_tag) {

for (; n > 0; --n)
++i;

for (; n < 0; ++n)
--i;

}

template <typename I>
void advance_helper(I i, typename std::iterator_traits<I>::difference_type n, std::input_iterator_tag) {

for (; n > 0; --n)
++i;

}

template <typename I>
void advance(I i, typename std::iterator_traits<I>::difference_type n) {

advance_helper(i, n, typename std::iterator_traits<I>::iterator_category{});
}

Tag dispatching (Listing 11)

#include <experimental/ranges/iterator>

namespace ranges = std::experimental::ranges;

template <ranges::RandomAccessIterator I>
void advance_helper(I i, ranges::difference_type_t<I> n) {

i += n;
}

template <ranges::BidirectionalIterator I>
void advance_helper(I i, ranges::difference_type_t<I> n) {

for (; n > 0; --n)
++i;

for (; n < 0; ++n)
--i;

}

template <ranges::InputIterator I>
void advance_helper(I i, ranges::difference_type_t<I> n) {

for (; n > 0; --n)
++i;

}

template <typename I>
void advance(I i, ranges::difference_type_t<I> n) { advance_helper(i, n); }

Killing tag dispatching (Listing 12)

// P0800 Listing 13 revised
#include <range/v3/all.hpp>

template <typename I>
void advance(I i, ranges::difference_type_t<I> n)
{

if constexpr (ranges::RandomAccessIterator<I>()) {
i += n;

}
else if constexpr (ranges::BidirectionalIterator<I>()) {
for (; n > 0; --n)

++i;
for (; n < 0; ++n)

--i;
}
else {

for (; n > 0; --n)
++i;

}
}

constexpr-if (Listing 13.1)

namespace ranges = std::experimental::ranges;

template <template <typename...> typename C, typename T>
C<T> from_file(const std::string& path)
{

if (auto in = std::ifstream{path}) {
const ranges::SignedIntegral size = [&in]{

ranges::SignedIntegral i = 0;
in >> i;
return i;

}();

auto c = [size]{
auto c = C<T>{};
if constexpr (std::is_same_v<C<T>, std::vector<T>>)

c.reserve(size);
return c;

}();
// ...

return c;
}

}

constexpr-if (Listing 14)

constexpr bool objects

auto v = std::vector<int>{}; static_assert(ranges::Regular<decltype(v)>());

for (auto i : v) {
static_assert(ranges::Regular<decltype(i)>());
// ...

}

constexpr-if (Listing 14)

for (const auto& i : v) {

static_assert(ranges::Regular<std::remove_const_t<std::remove_reference_t<decltype(
i)>>>());
// ...

}

for (const Regular& i : v) {
// ...

}

constexpr bool objects

auto v = std::vector<int>{}; static_assert(ranges::Regular<decltype(v)>());

for (auto i : v) {
static_assert(ranges::Regular<decltype(i)>());
// ...

}

constexpr-if (Listing 14)

for (const auto& i : v) {

static_assert(ranges::Regular<std::remove_const_t<std::remove_reference_t<decltype(
i)>>>());
// ...

}

for (const Regular& i : v) {
// ...

}

Concepts make C++ better

What is C++20?
• What’s the elevator pitch?

• We must have an answer

• It’s a major release
• Like C++98 and C++11

• Not minor like C++03 and C++14

• Not Medium like C++17

• If we deliver nothing major
• The C++ community will be disappointed and angry

• Other languages will benefit

• We must ship something coherent
• A simple list of features is not good enough

83

Conclusion
C++17 will change the way we write C++ code, just as

C++11 and C++14 did. For example, string_view and
optional are expected to be heavily used in writing
interfaces. And with parallel STL often you can just add
std::par or std::par_vec, and your algorithm will speed
up by a factor of 2-4 on ordinary hardware; we had a
compelling story with C++11 move semantics where we
could say “just recompile your code and it’ll often be
noticeably faster,” and this is likely to be an even bigger
improvement.

Codeplay
Standards

bodies
• HSA Foundation: Chair of software

group, spec editor of runtime and
debugging

• Khronos: chair & spec editor of SYCL.
Contributors to OpenCL, Safety Critical,
Vulkan

• ISO C++: Chair of Low Latency,
Embedded WG; Editor of SG1
Concurrency TS

• EEMBC: members

Research
• Members of EU research consortiums:

PEPPHER, LPGPU, LPGPU2, CARP

• Sponsorship of PhDs and EngDs for
heterogeneous programming: HSA,
FPGAs, ray-tracing

• Collaborations with academics

• Members of HiPEAC

Open source
• HSA LLDB Debugger

• SPIR-V tools

• RenderScript debugger in AOSP

• LLDB for Qualcomm Hexagon

• TensorFlow for OpenCL

• C++ 17 Parallel STL for SYCL

• VisionCpp: C++ performance-portable
programming model for vision

Presentations
• Building an LLVM back-end

• Creating an SPMD Vectorizer for OpenCL
with LLVM

• Challenges of Mixed-Width Vector Code
Gen & Scheduling in LLVM

• C++ on Accelerators: Supporting Single-
Source SYCL and HSA

• LLDB Tutorial: Adding debugger support
for your target

Company

• Based in Edinburgh, Scotland

• 57 staff, mostly engineering

• License and customize technologies for
semiconductor companies

• ComputeAorta and ComputeCpp:
implementations of OpenCL, Vulkan and
SYCL

• 15+ years of experience in
heterogeneous systems tools

Codeplay build the software platforms that deliver massive performance

What our ComputeCpp users say
about us

“We at Google have been working closely
with Luke and his Codeplay colleagues on

this project for almost 12 months now.
Codeplay's contribution to this effort has

been tremendous, so we felt that we
should let them take the lead when it

comes down to communicating updates
related to OpenCL. … we are planning to

merge the work that has been done so
far… we want to put together a

comprehensive test infrastructure”

Benoit Steiner – Google TensorFlow
engineer

“We work with royalty-free SYCL because
it is hardware vendor agnostic, single-

source C++ programming model without
platform specific keywords. This will allow
us to easily work with any heterogeneous

processor solutions using OpenCL to
develop our complex algorithms and

ensure future compatibility”

ONERA

“My team and I are working with
Codeplay's ComputeCpp for almost a year
now and they have resolved every issue
in a timely manner, while demonstrating
that this technology can work with the
most complex C++ template code. I am
happy to say that the combination of

Codeplay's SYCL implementation with our
HPX runtime system has turned out to be

a very capable basis for Building a
Heterogeneous Computing Model for the

C++ Standard using high-level
abstractions.”

Hartmut Kaiser -HPX

It was a great pleasure this week for us,
that Codeplay released the ComputeCpp

project for the wider audience. We've
been waiting for this moment and

keeping our colleagues and students in
constant rally and excitement. We'd like
to build on this opportunity to increase

the awareness of this technology by
providing sample codes and talks to

potential users. We're going to give a
lecture series on modern scientific

programming providing field specific
examples.“

WIGNER Research Centre

for Physics

Further information
• OpenCL https://www.khronos.org/opencl/

• OpenVX https://www.khronos.org/openvx/

• HSA http://www.hsafoundation.com/

• SYCL http://sycl.tech

• OpenCV http://opencv.org/

• Halide http://halide-lang.org/

• VisionCpp https://github.com/codeplaysoftware/visioncpp

https://www.khronos.org/opencl/
https://www.khronos.org/openvx/
http://www.hsafoundation.com/
http://sycl.tech/
http://opencv.org/
http://halide-lang.org/
https://github.com/codeplaysoftware/visioncpp

Community Edition

Available now for free!

Visit:

computecpp.codeplay.com

• Open source SYCL projects:
• ComputeCpp SDK - Collection of sample code and integration tools

• SYCL ParallelSTL – SYCL based implementation of the parallel algorithms

• VisionCpp – Compile-time embedded DSL for image processing

• Eigen C++ Template Library – Compile-time library for machine learning

All of this and more at: http://sycl.tech

http://sycl.tech/

Questions ?

DynaMix: A New Take on
Polymorphism
Borislav Stanimirov

Hello, World

#include <iostream>

int main()

{

std::cout << "你好 I'm Borislav.";

return 0;

}

Borislav Stanimirov

• Mostly a C++ programmer

• Mostly a game programmer since 2006

• Open-source programmer

• Currently employed at Chobolabs

http://www.chobolabs.com/

DynaMix: A New Take on Polymorphism

DynaMix: A New Take on Polymorphism

OOP and Polymorphism

• OOP has come to imply dynamic polymorphism
• Dynamic polymorphism is when the compiler

can see a function call but can't know which
actual piece of code will be executed next

• It's in the category of things which are slower
and can't have good compilation errors

• Totally anti modern C++

• OOP has been criticized a lot

• OOP can be useful for business logic

• People forget that C++ is an OOP language

• Out of the box in an OOP context C++ only
gives us virtual functions for polymorphism

C++ and Business Logic

• Is C++ is a bad choice for business logic?

• Many projects have chosen other languages:
Lua, Python, JavaScript, Ruby…

• C++ has poor OOP capabilities

• You can hotswap

• You can delegate to non-programmers

• However:
• The code is slower

• There is more complexity in the binding layer

• There are duplicated functionalities (which
means duplicated bugs)

DynaMix: A New Take on Polymorphism

DynaMix: A New Take on Polymorphism

Polymorphism in Modern C++

• Polymorphic type-erasure wrappers
• Boost.TypeErasure, Dyno, Folly.Poly

using Drawable = Library_Specific_Magic;
struct Square {

void draw(std::ostream& out) const { out << "Square\n"; }
};
struct Circle {

void draw(std::ostream& out) const { out << "Circle\n"; }
};
void f(const Drawable& d) {

d.draw(std::cout);
}
int main() {

f(Square{});
f(Circle{});

}

http://www.boost.org/doc/libs/1_65_1/doc/html/boost_typeerasure.html
https://github.com/ldionne/dyno
https://github.com/facebook/folly/blob/master/folly/docs/Poly.md

Polymorphic Wrappers

• Better than classic virtual functions
• Information hiding (PIMPL)

• Non-intrusive

• More extensible

• Potentially faster

• … but more or less the same
• Interface types

• Implementation types

• Basically improved virtual functions

• Don’t seem compelling enough to ditch scripting
languages

Other C++ Polymorphism

• Signals/slots (Multicasts)
• Very popular
• Especially in GUI libraries (say Qt)
• Boost.Signals2, FastDelegate, …

• Multiple dispatch
• collide(obj1, obj2);
• Obscure feature
• Relatively easy to mimic
• Folly.Poly, yomm11

• Functional programming libraries

http://www.boost.org/doc/libs/1_64_0/doc/html/signals2.html
https://www.codeproject.com/Articles/7150/Member-Function-Pointers-and-the-Fastest-Possible
https://github.com/facebook/folly/blob/master/folly/docs/Poly.md
https://github.com/jll63/yomm11

DynaMix: A New Take on Polymorphism

DynaMix: A New Take on Polymorphism

DynaMix

• Open source, MIT license, C++ library
• github.com/iboB/dynamix

• This talk is an introduction to the library
• Focus on the what and why
• Hardly even mention the “how”
• There will also be a small demo

• History
• 2007: Interface. Zahary Karadjov
• 2013: Rebirth as Boost.Mixin
• 2016: Bye, Boost. Hello, DynaMix

https://github.com/iboB/dynamix

Earthrise

Epic Pirate Story 2

War Planet Online

	6.Borislav Stanimirov DynaMix： 一个全新的 C++ 多态设计工具库
	7.1.Mike 第一场 模板在 C++ 17 中的发展与进化

